\( a>0, b>0 \) とするとき, \( \dfrac{b}{\sqrt{a}} \)および\( \dfrac{c}{\sqrt{a}+\sqrt{b}} \)の分母の根号を外すことを分母の有理化という. 分母の有理化をおこなうためには,多項式の乗法公式Ⅰ(展開公式Ⅰ)を応用する.
以下に実際の計算例を示す.
例
- \( \dfrac{2}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{b\sqrt{3}}{\big(~\sqrt{3}~\big)^2}=\dfrac{2\sqrt{3}}{3} \)
- \( \dfrac{5}{\sqrt{2}+\sqrt{3}}\dfrac{5}{\sqrt{2}+\sqrt{3}} \)
\(
\begin{eqnarray*}
& = & \dfrac{5}{\sqrt{2}+\sqrt{3}}\cdot\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\
& = & \dfrac{5\big(\sqrt{2}-\sqrt{3}~\big)}{\big(\sqrt{2}\big)^2-\big(\sqrt{3}\big)^2} \\
& = & \dfrac{5 \sqrt{2}-5\sqrt{3}}{2-3}\\
& = & \dfrac{5 \sqrt{2}-5\sqrt{3}}{-1}\\
& = & 5\sqrt{3}-5\sqrt{2}
\end{eqnarray*} \) - \( \dfrac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}} \)
\(
\begin{eqnarray*}
& = & \dfrac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}} \cdot \dfrac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}+\sqrt{3}-\sqrt{5}} \\
& = & \dfrac{\big(\sqrt{2}+\sqrt{3}\big)-\sqrt{5}}{\big(\sqrt{2}+\sqrt{3}\big)^2-\big(\sqrt{5}\big)^2} \\
& = & \dfrac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\big(\sqrt{2}\big)^2+2\sqrt{2}\sqrt{3}+\big(\sqrt{3}\big)^2-\big(\sqrt{5}\big)^2} \\
& = & \dfrac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{6}+3-5} \\
& = & \dfrac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}} \\
& = & \dfrac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}\cdot\dfrac{\sqrt{6}}{\sqrt{6}} \\
& = & \dfrac{\big(\sqrt{2}+\sqrt{3}-\sqrt{5}\big)\sqrt{6}}{2\big(\sqrt{6}\big)^2} \\
& = &\dfrac{\sqrt{2}\cdot\sqrt{6}+\sqrt{3}\cdot\sqrt{6}-\sqrt{5}\cdot\sqrt{6}}{2 \cdot 6} \\
& = & \dfrac{\sqrt{2 \cdot6}+\sqrt{3 \cdot 6}-\sqrt{5 \cdot 6}}{12} \\
& = & \dfrac{\sqrt{2^2 \cdot3}+\sqrt{3^2 \cdot 2}-\sqrt{30}}{12} \\
& = & \dfrac{\sqrt{2^2} \cdot\sqrt{3}+\sqrt{3^2} \cdot \sqrt{2}-\sqrt{30}}{12} \\
& = & \dfrac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}
\end{eqnarray*} \)
コメントを残す
コメントを投稿するにはログインしてください。