2012/06/05 -
数学
No Comments


簡単な指数法則
- \( x^2 \times x^3 = (x \times x ) \times (x \times x \times x ) = x^5 (=x^{2+3}) \)
- \( \big(x^3\big)^2 = (x \times x \times x ) \times (x \times x \times x ) = x^6 (=x^{3 \times 2}) \)
- \( \big(x y\big)^2 = (x \times y) \times (x \times y ) = x \times y \times x \times y = x \times x \times y \times y = x^2y^2 \)
一般に,\( m,~n \) を整数としたとき,
- \( x^m \times x^n = x^{m+n} \)
- \( \big(x^m\big)^n = x^{m n} \)
- \( \big(x y\big)^m = x^m y^m \)
が成り立つ.これを指数法則という.
また,\( x \ne 0 \)のとき,\( x^0 = 1 \) とし,\( p \)を正の整数とするとき,\( p^{-1} = \frac{1}{p} \)と定義する.